Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification.

نویسندگان

  • Mo Wang
  • Huanshun Yin
  • Nannan Shen
  • Zhenning Xu
  • Bing Sun
  • Shiyun Ai
چکیده

In this work, a photoelectrochemical (PEC) biosensor was fabricated for sensitive and specific detection of microRNA based on Bi2S3 nanorods and enzymatic signal amplification. Using the catalytic effect of alkaline phosphatase on l-ascorbic acid 2-phosphate trisodium salt (AAP), ascorbic acid (AA) was in situ generated and used as electron donor. Based on this, a signal-on protocol was successively achieved for microRNAs detection due to the dependence of photocurrent response on the concentration of electron donor of AA. The results demonstrated that the photocurrent response enhanced with increasing the hybridized concentration of microRNA. Under the amplification of the immunogold labeled streptavidin (SA-AuNPs), a low detection limit of 1.67 fM was obtained. The fabricated biosensor showed good detection stability and specificity, and it could discriminate only one-base mismatched microRNA sequence. Moreover, the down-regulated expression of microRNA-21 in DF-1 chicken fibroblast cells infected with subgroup J avian leukemia virus (ALVs) was confirmed by the developed method, indicating that microRNA-21 might be a new biomarker for avian leukemia. This work opens a different perspective for microRNAs detection and early diagnose of avian leukemia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid.

A novel signal "on" type of photoelectrochemical biosensor for microRNA-21 hybridization detection was fabricated, where Bi2S3 nanorods were used as photoactive material with a maximum adsorption at 450 nm visible light, hairpin-structure DNA as detecting probe, streptavidin as signal capturing unit and biotin functionalized ascorbic acid loaded apoferritin as signal amplification unit. Hybridi...

متن کامل

Au nanorods/ g-C3N4 composite based biosensor for electrochemical detection of chronic lymphocytic leukemia

Objective: With the increasing incidence of cancer and the dramatic effect of early detection on treatment and increase patient's life, many efforts have been devoted to making sensitive diagnosis systems. DNA as a biomarker for diagnosis of different types of cancers at the early stages of illness has attracted much attention.Methods: In this research novel electrochemical biosensor was ...

متن کامل

A new strategy for methylated DNA detection based on photoelectrochemical immunosensor using Bi2S3 nanorods, methyl bonding domain protein and anti-his tag antibody.

In this work, we fabricated a novel photoelectrochemical immunosensor for assay of DNA methylation, where Bi2S3 nanorods were used as photoelectric conversion material, MBD1 protein (a kind of methyl bonding domain protein) was used as DNA methylation recognizing unit, anti-his tag antibody was used to further inhibit the photocurrent and increase the detection sensitivity. The results demonstr...

متن کامل

A carbon nanotube/quantum dot based photoelectrochemical biosensing platform for the direct detection of microRNAs.

A versatile photoelectrochemical biosensing platform was developed based on DNA-CdS quantum dots (QDs) sensitized single-walled carbon nanotubes (SWCNTs)-COOH. Combining with cyclic enzymatic amplification, a convenient, sensitive and specific biosensor for the direct detection of microRNAs (miRNAs) was designed, which provided a novel approach for analysis of miRNAs.

متن کامل

An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer.

In this study, a new universal biosensor based on luminol anodic electrochemiluminescence (ECL) for the detection of microRNA-155 was constructed by using hydrogen peroxide (H2O2) as a co-reactant and hemin as a catalyzer for signal amplification. The bare glassy carbon electrode (GCE) was first electrodeposited with Au nanoparticles (AuNPs). Then, helper DNA, which was partly complementary wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014